GA5000 Gas Analyzer

Operating Manual

QED Environmental Systems, Inc.
2355 Bishop Circle West
Dexter, MI. 48130
Tel: (800) 624-2026
Fax: (734) 995-1170
Email: info@qedenv.com
Website: www.landteca.com
Table of contents

1.0 MANUAL GUIDELINES ... 4
 1.1 Hazard warnings and safety symbols ... 4
 1.2 Notes .. 4

2.0 INTRODUCTION .. 6
 2.1 Safety instructions ... 5
 2.2 Instructions for safe use .. 7
 2.3 MCERTS .. 9
 2.4 CIRIA ... 8

3.0 THE GA5000 GAS ANALYZER ... 9
 3.1 The GA5000 .. 9
 3.2 GA5000 standard product .. 10

4.0 GA5000 OPTIONAL PRODUCTS AND ACCESSORIES .. 11
 4.1 Optional products ... 11
 4.1.1 Temperature probe (optional) .. 11
 4.1.2 Anemometer (optional) .. 11
 4.1.3 H₂S filter (optional) .. 11
 4.1.4 Gas analyzer manager – GAM (optional) ... 12
 4.1.5 GPS (optional) ... 12
 4.1.6 Bluetooth .. 12
 4.1.7 Internal Flow (optional) ... 12

5.0 GA5000 INSTRUMENT FEATURES ... 13
 5.1 Physical characteristics of the instrument panel ... 13
 5.2 Analyzer features and keys ... 15
 5.3 Instrument connection points .. 15

6.0 GENERAL OPERATIONAL INSTRUCTIONS .. 16
 6.1 Switching the instrument on .. 16
 6.1.1 Power on self-test .. 16
 6.2 Switching the analyzer off .. 16
 6.3 Instrument status icons ... 17
 6.4 Instrument LED power states ... 18
 6.5 Changing between parameters .. 18
 6.6 Entering data .. 18
 6.7 Instrument main gas read screen .. 19
 6.8 Storage ... 19
 6.9 Battery/charging ... 19
 6.10 Cleaning instructions .. 20
 6.11 Memory .. 20
 6.12 Warning and error codes ... 21

7.0 OPERATOR SETTINGS ... 21
 7.1 Menu key .. 21
 7.2 Device settings ... 22
 7.2.1 Date and time .. 22
 7.2.2 Bluetooth ... 23
 7.2.3 Device information ... 23
 7.2.4 Diagnostics .. 24
 7.2.5 Navigation (optional) .. 25
 7.3 User settings .. 26
 7.3.1 Operating language ... 26
1.0 Manual guidelines

1.1 Hazard warnings and safety symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>Warning</td>
<td>Information in this manual that may affect the safety of users and others is preceded by the warning symbol. Caution - Failure to follow the correct information may result in physical injury which in some cases could be fatal. If the equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.</td>
</tr>
<tr>
<td>CE</td>
<td>CE conformity-The CE-marking is the manufacturer's statement to the EU authorities that the product complies with all relevant CE-marking Directives.</td>
<td>If the CSA mark appears with the indicator "US" or "NRTL" it means that the product is certified for the U.S. market, to the applicable U.S. standards.</td>
</tr>
<tr>
<td>VDE</td>
<td>VDE mark is a symbol for electrical, mechanical, thermal, toxic, radiological and other hazards.</td>
<td>Separate collection, handling and disposal for waste electrical and electronic equipment and its components.</td>
</tr>
<tr>
<td>⚡</td>
<td>Electric shock warning.</td>
<td>Refer to operators manual.</td>
</tr>
<tr>
<td>❝</td>
<td>Double insulated construction - does not require an Earth.</td>
<td>Specific marking of explosion protection (ATEX only).</td>
</tr>
<tr>
<td>II 2G</td>
<td>Equipment group and category. G = gases; the type of explosive atmosphere.</td>
<td>IECEx licenced mark (IECEx only).</td>
</tr>
<tr>
<td>T</td>
<td>Fuse.</td>
<td>Equipment for indoor use only.</td>
</tr>
</tbody>
</table>

1.2 Notes

Important/useful information and instructions are shown clearly throughout the manual in a note format. For example:

☞ Note: For further information please contact Technical Support at (800) 968-2026 or email landtec_support@qedenv.com
2.0 Introduction

This manual explains how to use the GA5000 landfill gas analyzer. The GA5000 is designed to meet all applicable quality assurance and quality control requirements for Method 3A and Method 2, Section 10.3 as listed in the U.S. Environmental Protection Agency’s updated New Source Performance Standards (NSPS), Emission Guidelines (EG). Utilized with dedicated software, the GA5000 becomes an extremely powerful detection, monitoring and change indicator tool.

The 5000 series of gas analyzers complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

1) This device may not cause harmful interference.

2) This device must accept any interference received, including interference that may cause undesired operation.

2.1 Safety instructions

⚠️ Warning

The 5000 series of gas analyzers can be used for measuring gases from landfill sites and other sources as described in this manual.

The operator may be exposed to harmful gases during the use of the instrument. Inhaling these gases may be harmful to health and in some cases may be fatal.

It is the responsibility of the user to ensure that he/she is adequately trained in the safety aspects of the gases being used and appropriate procedures are followed. In particular, where hazardous gases are being used the gas exhausted from the analyzer must be piped to an area where it is safe to discharge the gas.

Hazardous gas can also be expelled from the instrument when purging with clean air.

The instrument has been designed to be used in explosive atmospheres as defined by the classification. The instrument can be configured to measure low levels of several gases, but may not be certified for use in potentially explosive atmospheres of these gases. It is the responsibility of the operator to determine the protection concept and classification of equipment required for a particular application and whether these gases create a potentially explosive atmosphere.

똘 Note: Gas analyzers are a sensitive piece of scientific equipment, and should be treated as such. If the equipment is used in a manner not specified by the manufacturer, the protection provided by the instrument may be impaired.
2.2 Instructions for safe use

For ATEX and IECEx the 5000 series of gas analyzers are certified to Hazardous Area Classification

II 2G Ex ib IIA T1 Gb (Ta = -10°C to +50°C)

It is vital instructions are followed closely. It is the responsibility of the operator to determine the protection concept and classification required for a particular application.

(Reference European ATEX Directive 94/9/EC, Annex II, 1.0.6.)

The following instructions apply to equipment covered by certificate numbers SIRA 11ATEX2197X and IECEx SIR 11.0089X:

- The equipment may be used with flammable gases and vapors with apparatus group IIA and temperature class T1.
- The equipment can contain gas sensing heads for the detection of particular gases. The inclusion of a sensor does not infer that the equipment is suitable for the use of gases with a temperature class of less than T1.
- The equipment is only certified for use in ambient temperatures in the range -10°C, (14°F), to +50°C, (122°F), and should not be used outside this range.
- The equipment must not be used in an atmosphere of greater than 21% oxygen.
- Repair of this equipment shall be carried out in accordance with the applicable code of practice.
- When used in a hazardous area only use 5K-TP5 temperature probe (SIRA 11ATEX2197X and IECEx SIR11.0089X). For connector C, the GF5.4 anemometer (BVS 04ATEXE194) for use with ATEX only. The analyzer should not be connected to any other devices in the hazardous area including the 5K-USB lead (connector A) or 5K-BC battery charger (connector B) supplied with the analyzer.

Do not charge, recharge or open in a potentially explosive atmosphere. In hazardous area only use “Temperature Probe 5K-TP5” in Connector B. Connector C (Uo=10V,lo=5mA,Po=50mW,Ci=0, Li=0, Co=100uF, Lo=1000mH), Connector B (Uo=5V,lo=6mA,Po=7mW,Ci=0, Li=0, Co=100uF, Lo=1000mH)

MAXIMUM NON-HAZARDOUS SUPPLIES:
Connector A - Um=6V Connector B - Um=10.1V

- The safe area apparatus that is to be connected to the USB Port shall be a Safety Extra Low Voltage (SELV) or Protective Extra Low Voltage (PELV) circuit.
- Only a Landtec Instrument battery pack part number 3-20087/S-R1 or 3-201113/S is permitted as a replacement. This battery pack shall only be changed in a safe area by Landtec personnel.
- Only Battery Charger type 5K-BC shall be used to recharge the batteries via Connector ‘B’.
- If the equipment is likely to come into contact with aggressive substances, e.g. acidic liquids or gases that may attack metals, or solvents that may affect polymeric materials, then it is the responsibility of the user to take suitable
precautions, e.g. regular checks as part of routine inspections or establishing from the material's data sheet that it is resistant to specific chemicals that prevent it from being adversely affected, thus ensuring that the type of protection is not compromised.

- The relative pressure range is +/-500 mbar, (7.25psi). Note, however, that the input pressure should not exceed +/- 500 mbar, (7.25psi), relative to atmospheric pressure and the output pressure should not exceed +/- 100 mbar, (1.45psi), relative to atmospheric pressure.

For CSA (Canada) the 5000 series of gas analyzers are certified to Hazardous Area Classification

CLASS 2258 03 - PROCESS CONTROL EQUIPMENT - Intrinsically Safe and Non-Incendive Systems - For Hazardous Locations

![Ex ib IIA:](image)

Model GA 5000, GEM 5000 and BIOGAS 5000 Methane Detectors; portable, battery powered with non-field-replaceable Battery Pack P/N 3-20087/S-R1 or 3-2011113/S; intrinsically safe and providing intrinsically safe circuits ("[ib]" for Zone 1) to Model 5K-TP5 Temperature Probe (Connector B) and with entity output parameters as tabulated below; Temperature Code T1; 14 °F ≤ Tamb. ≤ +122°F.

<table>
<thead>
<tr>
<th>Connector</th>
<th>Entity Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Uo (V)</td>
</tr>
<tr>
<td>B</td>
<td>5.0</td>
</tr>
<tr>
<td>C</td>
<td>10.0</td>
</tr>
</tbody>
</table>

Note: This device has been investigated for electrical safety features only.

For CSA (USA) the 5000 series of gas analysers are certified to Hazardous Area Classification

CLASS 2258 83 - PROCESS CONTROL EQUIPMENT - Intrinsically Safe and Non-Incendive Systems - For Hazardous Locations - CERTIFIED TO U.S. STANDARDS

![AEx ib IIA:](image)

Model GA 5000, GEM 5000 and BIOGAS 5000 Methane Detectors; portable, battery powered with non-field-replaceable Battery Pack P/N 3-20087/S-R1 or 3-2011113/S; intrinsically safe and providing intrinsically safe circuits ("[ib]" for Zone 1) to Model 5K-TP5 Temperature Probe (Connector B) and with entity output parameters as tabulated below; Temperature Code T1; 14 °F ≤ Tamb. ≤ +122°F.

<table>
<thead>
<tr>
<th>Connector</th>
<th>Entity Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Uo (V)</td>
</tr>
<tr>
<td>B</td>
<td>5.0</td>
</tr>
<tr>
<td>C</td>
<td>10.0</td>
</tr>
</tbody>
</table>

Note: This device has been investigated for electrical safety features only.
2.3 MCERTS

MCERTS is the UK Environment Agency’s Monitoring Certification Scheme. The scheme provides a framework within which environmental measurements can be made in accordance with the Agency’s quality requirements. The scheme covers a range of monitoring, sampling and inspection activities.

MCERTS promotes public confidence in monitoring data and provides industry with a proven framework for choosing monitoring systems and services that meet the Environment Agency’s performance requirements.

The Environment Agency has established its Monitoring Certification Scheme (MCERTS) to deliver quality environmental measurements. The MCERTS product certification scheme provides for the certification of products according to Environment Agency performance standards, based on relevant CEN, ISO and national standards.

MCERTS certified instruments have been tested by an independent body to ensure that they meet certain performance requirements. In addition the manufacturer of an MCERTS product is regularly audited to ensure that the performance requirements of the certification are being continually met.

The 5000 series of gas analyzers have been certified to Version 3.1 of the ‘Performance Standards for Portable Emission Monitoring Systems’.

2.4 CIRIA

The CIRIA guideline ‘Assessing the risks posed by hazardous ground gases to buildings’ proposes that gas concentrations and flow rates should be monitored.

As an example methodology, they suggest using a gas analyzer to first measure flow and pressure and then afterwards to measure gas concentration.

The logging profile option offers frequency of data to be collected within a timed period which, in return, identifies a gas profile of the sample point being monitored, information about whether the sample point is performing correctly, when the peaks occur and whether air is drawn in after a certain period. This logging option is available on firmware software version 1.6.5

Versions of the GA5000 analyzer range with internal flow on firmware version 1.6.5 and above have the ability to take measurements according to the CIRIA guidelines, while still allowing other users to take the measurements as before.
3.0 The GA5000 Gas Analyzer

3.1 The GA5000

The GA5000 is designed to meet all applicable quality assurance and quality control requirements for Method 3A and Method 2, Section 10.3 as listed in the U.S. Environmental Protection Agency’s updated New Source Performance Standards (NSPS), Emission Guidelines (EG).

Benefits:

- Easy to use and calibrate.
- Supports environmental legislation compliance.
- Market leading reliability.
- Standardizes monitoring routines.
- Easy transfer of data.

Features:

- ATEX, IECEX certified, CSA and UKAS calibration (ISO17025)
- MCERTS certified.
- Measures % CH₄, CO₂ and O₂.
- Up to 6 gases can be measured.
- Peak and previous readings shown.
- Simultaneous display of all gases.
- 3 year warranty.
- Event log.
- Data logging.

Applications:

- Landfill gas monitoring.
- Waste to energy.
- Site investigation.
3.2 GA5000 standard product

Reference:

A Hard carry case
B In-line water trap tubing & filter
C Gas analyzer instrument
D H2S filter (optional – if the compensated CO cell is fitted)
E 5000 series safety manual
F Mains battery charger and adaptors:
 - UK
 - Europe
 - US
 - Australia
4.0 GA5000 Optional Products and Accessories

4.1 Optional products
The GA5000 gas analyzer has a number of optional products for purchase which enhance the usability and enable further analysis of data and reading information.

☞ Note: For more information on the features listed in this section please contact Sales (800) 624-2026 or email info@gedenv.com.

4.1.1 Temperature probe (optional)
The GA5000 gas analyzer has the facility to automatically display and record the borehole temperature via an optional temperature probe.

When a temperature probe is fitted the temperature reading will be displayed on the 'Main Gas Read Screen’ and recorded with all other data.

☞ Note: Temperature probes with an Ex label are part of the GA5000 Ex certification SIRA 11ATEX2197X and IECEx SIR11.0089X, and therefore certified for use under the same conditions as the analyzer.

4.1.2 Anemometer (optional)
The GA5000 gas analyzer has the facility to automatically display and record high flow via an optional anemometer probe. It is designed to plug into the instrument and instantly provide a flow indication. An anemometer probe adds flow measurements to the professional reporting ability of the GA5000 range along with gas concentrations, pressure and temperature.

The anemometer has a simple connection, a narrow diameter measurement head (11mm), a wide temperature operating range (up to 80°C) and indicates flows up to 40 m/sec.

When an anemometer probe is fitted to the analyzer the flow will be displayed in the 'Main Gas Read Screen’ and recorded with all other data.

Flow can be measured in either m/s (gas velocity) or m³/hr (volume flow rate). In order to calculate the volume flow rate the pipe diameter will need to be entered into the instrument, either manually or via the Gas Analyzer Manager software.

☞ Note: "The anemometer probe is ATEX certified for use in a potentially explosive atmosphere under Ex certificate BVS 04ATEXE194.

4.1.3 H₂S filter (optional)
The GA5000 gas analyzer has the capability to use an H₂S filter and is required as standard if the compensated CO cell is fitted and configured at the time the instrument is manufactured. H₂S gas can have a cross-gas effect on the CO reading. By using a filter, the H₂S is removed from the gas sample, therefore providing a more accurate CO reading.

The filter only needs to be used when you are trying to get rid of any possible cross gas effects H₂S might have on other gases. Do not use the filter on all boreholes.
4.1.4 Landtec Systems Gas Analyzer Manager – LSGAM

Landtec Systems Gas Analyzer Manager (LSGM) enables the operator to maximize the operation of the gas analyzer. It enables direct communication with the unit, features a simple upload and download facility and is fully compatible with the latest Microsoft™ operating systems.

Features:

- Organization and transfer of borehole IDs and readings to and from the gas analyzer.
- Configuration of the gas analyzer.
- Flexible grouping of the IDs.
- Structured organization of transferred data.
- Automatic detection of instrument type and available options.
- Secure data mode to prevent tampering.
- First time set-up wizard.
- Enable flow measurements for GA5000 gas analyzers.

4.1.5 GPS (optional)

An optional GPS feature is available for the GA5000 gas analyzer. It enables the site engineer to automatically locate borehole IDs using GPS satellite signal from predefined borehole IDs uploaded from Gas Analyzer Manager or set on the analyzer when out in the field prior to taking a reading. The GPS reading data is stored for each measurement reading providing an audit trail confirming that a reading was taken.

4.1.6 Bluetooth

The analyzers are fitted with a Bluetooth receiver which enables the operator to download readings and upload IDs without the need to connect the analyzer to a PC via a USB cable.

4.1.7 Internal Flow (optional)

The GA5000 gas analyzer has the capability to measure the gas flow from a borehole without the need for an additional flow pod. The user is automatically prompted to take this measurement during the normal reading sequence. This function can be selected as ‘On’ or ‘Off’ for each ID using Gas Analyzer Manager. If it is off the user will not be prompted to measure the flow.
5.0 GA5000 Instrument Features

5.1 Physical characteristics of the instrument panel

Front view:

Reference:

A Main Gas Read Screen
B Soft-keys
C Backlight Key
D Menu Key
E Pump key
F LED Light
G On/Off Key
H Assistance key
I Scroll Up Key
J Enter Key
K Scroll down key
L Key 0 – Space key

Back view:

Reference:

M Model Number
N Serial Number
O Part Number
P Certificate Number
Q Recalibrated Date
5.2 Analyzer Features and Key

<table>
<thead>
<tr>
<th>Ref</th>
<th>Feature</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Main Read Screen</td>
<td>Start and end screen when using the instrument.</td>
</tr>
<tr>
<td>B</td>
<td>Soft-keys</td>
<td>The function of the three ‘soft-keys’ on the front of the instrument panel is determined by menu options taken. Functions vary from screen to screen.</td>
</tr>
<tr>
<td>C</td>
<td>Backlight Key</td>
<td>Enables the operator to turn the backlight on/off on the analyser display panel.</td>
</tr>
<tr>
<td>D</td>
<td>Menu Key</td>
<td>Press the ‘Menu’ key to view and maintain User, Device and Operation settings.</td>
</tr>
<tr>
<td>E</td>
<td>Pump Key</td>
<td>Press the ‘Pump’ key to start or stop the pump.</td>
</tr>
<tr>
<td>F</td>
<td>LED Light</td>
<td>LED power light is visible on the front of the analyser when the instrument is powered on.</td>
</tr>
<tr>
<td>G</td>
<td>On/Off Key</td>
<td>Press the ‘On/Off’ key for 2 seconds to switch the instrument on and off.</td>
</tr>
<tr>
<td>H</td>
<td>Assistance key</td>
<td>Press for on-screen assistance and help.</td>
</tr>
<tr>
<td>I</td>
<td>Enter key</td>
<td>Used to accept</td>
</tr>
<tr>
<td>J</td>
<td>Scroll up Key</td>
<td>Also ‘Key 2’. Press scroll up to view further information on the instrument screen.</td>
</tr>
<tr>
<td>K</td>
<td>Scroll down Key</td>
<td>Also ‘Key 8’. Enables the operator to scroll down to display more information.</td>
</tr>
<tr>
<td>L</td>
<td>Space key</td>
<td>Also ‘Key 0’. Press to enter a space when entering text on the instrument screen.</td>
</tr>
<tr>
<td>M</td>
<td>Model Number</td>
<td>Instrument model type identification.</td>
</tr>
<tr>
<td>N</td>
<td>Serial Number</td>
<td>Unique identification for the instrument. Verification of the serial number will be required if Technical Support assistance is needed.</td>
</tr>
<tr>
<td>O</td>
<td>Part Number</td>
<td>Manufacturer’s part number.</td>
</tr>
<tr>
<td>P</td>
<td>Recalibrated Due</td>
<td>The date displayed is the date the instrument is due for factory recalibration.</td>
</tr>
<tr>
<td>Q</td>
<td>Certificated Number</td>
<td>Displays instrument certification information.</td>
</tr>
</tbody>
</table>
5.3 Instrument connection points

Top view:

<table>
<thead>
<tr>
<th>Ref</th>
<th>Connection Point:</th>
<th>Function:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Connector A</td>
<td>Attach the USB lead for PC-to-analyzer connectivity.</td>
</tr>
<tr>
<td>B</td>
<td>Inlet Port & Static Pressure Port (White port)</td>
<td>Attach the sample tube to take a gas sample. Also used to measure the relative pressure.</td>
</tr>
<tr>
<td>C</td>
<td>Differential Pressure Port (Blue port)</td>
<td>Attach the sample tube to measure internal flow.</td>
</tr>
<tr>
<td>D</td>
<td>Connector B</td>
<td>Attach the temperature probe and also used to attach the charger to the analyzer for charging.</td>
</tr>
<tr>
<td>E</td>
<td>Gas Outlet Port (Yellow port)</td>
<td>The gas outlet port is the point at which the sample gas is expelled. tubing may also be attached to the port.</td>
</tr>
<tr>
<td>F</td>
<td>Connector C</td>
<td>Attach the anemometer.</td>
</tr>
</tbody>
</table>
6.0 General Operational Instructions

6.1 Switching the instrument on
1) To switch on the analyzer, press and hold the ‘On/Off’ key. The Landtec logo will display followed by the instrument warm up.

2) Following the instrument warm up, the ‘Date and Time’ screen is displayed prompting the technician to set the date and time and required format.

3) When complete, select the soft-key to ‘Exit’ and the ‘Power On Self-test’ screen is displayed followed by instrument status. Instrument status displays the instrument's service due date, serial number, options, service scheme and software version. Text will also display stating ‘Self-test complete’.

4) Select the soft-key ‘Next’ to move onto the next screen and the ‘Technician Login’ screen is displayed.

5) Use the cursor keys to move through the list of ID’s. Select either the required ‘Technician ID’ from the list followed by the soft-key ‘Accept’, or select ‘Default’ followed by the soft-key ‘Accept’ to continue to the ‘Main Gas Read Screen’.

\[Note: \] The selected technician ID is displayed at the top left corner of the Main Gas Read Screen.

6.1.1 Power on self-test
When switched on, the read-out will perform a pre-determined self-test sequence. During this time many of the analyzer’s functions are tested, including:

- General operation
- Gas flow measurement
- Calibration
- Battery charge level

During the self-test the following information is also displayed:

- Manufacturer’s service due date
- The last gas check date
- Software version programmed
- Date format
- Serial number
- Operating language
- The currently enabled sales option

\[Note: \] The self-test should only be done with the analyzer sampling fresh air.

6.2 Switching the instrument off
1) To switch off the analyzer, press and hold the ‘On/Off’ key, at which point a clean air purge will be carried out and the instrument will then switch off.

2) If for any reason the analyzer ‘locks up’ and will not switch off in this manner, press and hold the ‘On/Off’ key for 15 seconds; this will force the instrument to switch off.
6.3 Instrument status icons
The following icons may be displayed on the instrument screen:

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Battery charge state icon]</td>
<td>Battery charge state
Gives the operator an estimation of the battery charge state. For example 100% gives about 8 hours use in the field and 50% would mean that there is approximately 4 hours battery life remaining.</td>
</tr>
<tr>
<td>![Battery charge state icon]</td>
<td>Battery charge state
Indicates less than 2 hour of charge remaining.</td>
</tr>
<tr>
<td>![Pump status icon]</td>
<td>Pump status
This icon is displayed along with a counter showing the pump run-time. This counts down where the operator has specified the pump run-time; if not it counts up; the icon turns red when stalled.</td>
</tr>
<tr>
<td>![Pump status icon]</td>
<td>Pump stalled
This icon is displayed when the pump stalls. The instrument’s gas inlet (or outlet) may be blocked. This warning is most commonly caused by a water-logged or dirty sample filter. Change the sample filter and check for obvious blockages in the sample tubes. Alternatively, a small amount of adjustment can be made to the low flow detection point to compensate for minor changes in the performance of the pump fitted to the instrument.</td>
</tr>
<tr>
<td>![GPS signal strength icon]</td>
<td>GPS signal strength
This icon shows the signal strength the analyser’s GPS module is able to provide. Full, okay and fair strength respectively.</td>
</tr>
<tr>
<td>![GPS signal strength icon]</td>
<td>GPS failure
The GPS was unable to get a line of sight lock on enough satellites. Or, it may be that it hasn’t had time to get a lock.</td>
</tr>
<tr>
<td>![Bluetooth icon]</td>
<td>This indicates when Bluetooth has been enabled. The color changes from gray to blue when connected.</td>
</tr>
<tr>
<td>![Language icon]</td>
<td>Language
This icon indicates the currently selected operating language. This can be changed via the main menu.</td>
</tr>
<tr>
<td>![Data logging icon]</td>
<td>Data logging
This icon indicates that the data logging feature is in operation.</td>
</tr>
<tr>
<td>![Service overdue icon]</td>
<td>Service overdue
This icon indicates that the analyser is overdue for its service</td>
</tr>
<tr>
<td>![Legacy mode icon]</td>
<td>Legacy mode
This icon indicates that the analyser is in legacy mode and hence is ready to connect to a PC.</td>
</tr>
<tr>
<td>![USB disabled icon]</td>
<td>USB disabled
This icon indicates that the analyser has reached a battery critical state, and hence has turned off its USB connectivity.</td>
</tr>
</tbody>
</table>
6.4 Instrument LED power states
When the instrument is powered on a LED power light is visible on the front of the analyzer, located above the ‘On/Off’ key. The following LED power light states are as follows:

- **Steady yellow**: Unit turning on. This will extinguish when software has loaded correctly.
- **Flash (rapid)**: Unit is powering off.
- **Flash (slow)**: Power off is being delayed for purge/shutdown handling.
- **Flash yellow**: Unit is turning off due to power button being pressed.
- **Flash red**: Unit is turning off due to critically low battery.

☞ Note: Pressing and holding the power button for ~20s resets the analyzer.

6.5 Changing between parameters
By default, the instrument displays the ‘Main Gas Read Screen’ (for gas measurement). The instrument will return to this screen after power on or when returning from the menus. The ‘Scroll’ keys can be used to switch to another measurement screen.

6.6 Entering data
During normal operation the operator may be prompted to enter data or information via the keypad, i.e. entering an ID code or setting an alarm level.

When entering data into the instrument all fields are fixed format and are populated from the left.

Text:
Entering text uses similar multi-tap functionality as a mobile phone. Key the numeric/alpha key pad the required number of times to select the appropriate letter. To key numeric data continue to press the numeric/alpha key until the required number is displayed.

Numeric data:
To enter a new date 09/15/16 the operator would type in 091516 using the numeric keypad in the following sequence:-

```
* 0_/__/
* 09_/__/
* 09/1_/__
* 09/15_/__
* 09/15/1_
* 09/15/16
```

Press the ‘Enter’ key to confirm/accept data keyed.

Any mistakes can be corrected using the soft-key ‘Delete’ which will delete the last digit typed. Alternatively, the sequence can be retyped before the ‘Enter’ key is pressed and the existing numbers will be pushed off the screen.

☞ Note: The instrument will not allow invalid data to be entered; this should be deleted and re-entered.
6.7 Instrument main gas read screen
The 'Main Gas Read Screen' is considered to be the normal operating screen and all operations are carried out from this starting point.

The actual data shown on this display will depend on the version of the instrument and the options that have been selected. In general, all of the main readings will be shown.

6.8 Storage
The analyzer should not be exposed to extreme temperature. For example, do not keep the analyzer in a hot car. When not in use analyzers should be kept in a clean, dry and warm environment, such as an office. Protect the analyzer with either the soft carry case or store in the hard carry case provided with the instrument.

The instrument should be discharged and fully charged at least once every four weeks, regardless of indicated charge state.

6.9 Battery/charging
The battery used in the 5000 series of gas analyzers is nickel metal hydride and manufactured as a pack from six individual cells. This type of battery is not so susceptible to the “top off” charging ‘memory effects’ as nickel cadmium batteries, although it is not recommended that the unit is given small “top off” charges.

Note: To reach optimum charge, it is recommended that the instrument is switched off when being charged and remains switched off during the charging process.

A full charge will take approximately 4 hours from a fully discharged battery.

Warning
The battery charger is NOT covered by the Ex certification. The battery must be charged only in a safe area.

The battery charger is intelligent and will indicate when the unit is charging and charged.

The instrument must be charged ONLY using the battery charger supplied with the instrument. The battery charger supplied is intended for indoor use only. Please ensure adequate ventilation while charging. Typically, a fully charged battery will last 7-8 hours. A quick 30 minute charge can be used to give approximately one hours use in the field but this may shorten the battery life. Temperature can dramatically affect the battery life; please take this into account when estimating battery life.
Note: Connect the charger to the mains attaching the appropriate adaptor.

Power supply front and back drawing:

![Power supply front and back drawing](image)

Charger:
- Input voltage: 100-240V AC +/- 10%
- Input frequency: 50-60Hz +/- 10%
- Input current: 0.4A@100VAC .. 0.2A@240VAC
- Output voltage: 10.1VDC max
- Output current: 1.5A max

Note: This charger has been internally restricted to 1.5A

6.10 Cleaning instructions

Do NOT use any cleaning agents to clean the analyzer or battery charger as they may have an adverse effect on the safe use of these devices.

6.11 Memory

The analyzer's memory is stored in a readings and configuration database. The analyzer will prompt when its memory is full, and you will not be able to store any further readings. Please download your readings via GAM or the Basic Download Software and then clear the memory.

Note: The analyzer should never be stored for prolonged periods with valuable data in its memory. It is advisable to download all readings to LSGAM at the end of each day's monitoring. To clear the memory, please refer to the Landtec Systems Gas Analyzer Manager (LSGAM) operating manual.
6.12 Warning and error codes
When switched on, the instrument will perform a predetermined self-test sequence taking approximately ten seconds. During this time many of the instrument's working parameters and settings are checked. If any operational parameters are out of specification or if the pre-programmed recommended calibration/service date has passed, errors or warnings may be displayed.

Note: For further information please refer to section ’10.0 Problem Solving’.

7.0 Operator Settings

7.1 Menu key

The ‘Menu’ key enables the operator to select options to set up specific parameters and perform operational tasks prior to sample readings being taken or to view data and information stored in the instrument.

1) Select the ‘Menu’ key on the front of the analyzer and the following screen is displayed:

2) Press the relevant numeric key on the analyser keypad to select the required option.

3) To exit this menu, select the soft-key 'Exit' on the front of the analyzer and the operator is returned to Main Gas Read Screen.
7.2 Device Settings

7.2.1 Date and time

This option enables the operator to set the instrument date and time or to receive and update the settings automatically from satellite signal.

1) Select the ‘Menu’ key on the front of the analyser to display the ‘Device Settings’ menu followed by ‘Key 1 – Date and Time’ and the following screen is displayed:

2) Select ‘Key 1 – Set Date’ and key in the required date. Type the date using the numeric keypad. Press the soft-key ‘Date Format’ to toggle and select the required date format i.e. dd/mm/yy. Press the ‘Enter’ key to confirm and update the date setting.

3) Select ‘Key 2 – Set Time’ and key in the required time (hh:mm). Type the time using the numeric keypad and press the ‘Enter’ key to confirm the update.

4) The operator may also change the default time zone. Selecting the ‘Key 4 Scroll-left’ or ‘Key 6 – Scroll right’ to move through the different time zones. Press the ‘Enter’ key to confirm your default setting.

5) Select ‘Key 3’ to toggle between ‘Manual Update’ and ‘Automatic Update’ in order to choose how the date and time is set if updating from satellite signal.

 Manual Used to manually obtain and update the date and time from the satellite signal when requested. Select soft-key ‘Set now’ to set date and time from satellite when available.

 Automatic Used to automatically update the date and time received from the satellite signal when available. This option is only available when the GPS option is fitted to the analyzer at the time of manufacture.

6) Select the soft-key ‘Exit’ to exit and return to the ‘Device Settings’ menu.
7.2.2 Bluetooth

This option enables the operator to set and utilize Bluetooth technology. This may be useful when downloading gas readings from the analyzer to the PC instead of connecting the analyzer to a PC via a USB cable. Bluetooth may also be used to transfer Site IDs to other 5000 series gas analyzers if required.

1) Select the 'Menu' key on the front of the analyser to display the 'Device Settings' menu.

2) Select ‘Key 2 – Bluetooth’ and the following screen is displayed:

3) Enter the Pairing PIN value when prompted by your computer for the device’s pairing code.

4) Select soft-key ‘Exit’ to exit the screen and return to the ‘Device Settings’ menu.

7.2.3 Device information

This option displays default instrument information and settings such as serial number, service due date, last zero calibration date and last span calibration date.

1) Select the ‘Menu’ key on the front of the analyser to display the ‘Device Settings’ menu.

2) Select ‘Key 3 – Device Information’ and the following screen is displayed:
3) The information displayed on this screen is informational only and cannot be edited by the operator. The operator may be asked serial number, service due date and version number information when contacting Landtec.

⚠️ Note: The communications setting ‘Legacy’ mode is for use with GAM >=v1.5. GA5K mode is reserved for future applications – use with 5000 series updater tool

4) Select soft-key ‘Exit’ to exit the screen and return to the ‘Device Settings’ menu.

7.2.4 Diagnostics

This option enables the Landtec Technical Support Team to identify and resolve issues with the instrument and settings. If required, the operator may be asked to confirm the diagnostics displayed.

1) Select the ‘Menu’ key on the front of the analyser to display the ‘Device Settings’ menu.

2) Select ‘Key 4 – Diagnostics’ and the following screen is displayed:

![Diagnostics screen](image)

3) Select soft-key ‘Next’ to display the next screen, ‘Previous’ to return to the previous screen, or select soft-key ‘Exit’ to exit this screen and return to the ‘Device Settings’ menu.

⚠️ Note: For further information please contact Technical Support at (800) 968-2026 or email landtec_support@qedenv.com.
7.2.5 Navigation (optional)

This option enables the operator to switch the ‘GPS Navigation’ functionality on or off. (This is optional and dependent upon purchasing the navigation option).

1) Select the ‘Menu’ key and the ‘Device Settings’ menu is displayed.

2) Select ‘Key 5 – Navigation On’ to switch on the GPS navigation functionality or ‘Key 5 – Navigation Off’ to switch the GPS navigation functionality off.

Note: For further information please refer to section ‘8.0 – Taking Readings’.
7.3 User settings

To access the 'User settings' menu, select the 'Menu' key on the front of the analyzer to display the 'Device Settings' menu followed by the soft-key to display 'User Settings' menu. The following menu is displayed:

To exit the user settings menu select the soft-key 'Exit'.

7.3.1 Operating language

This option enables the operator to specify the operating language displayed for the instrument.

1) Select 'Key 1 – Operating Language' and the following screen is displayed:
2) Set the required language for the gas analyzer by selecting the appropriate function key. Choose from, on the first page:

Key 1 English (US)
Key 2 German
Key 3 Spanish
Key 4 French
Key 5 Italian
Key 6 Portuguese

Use the soft-keys to move to the next page for further language options, including simplified Chinese.

3) To exit this option, select the soft-key ‘Exit’ and the operator is returned to the ‘User Settings’ menu.

7.3.2 Units of measurement

This option enables the operator to specify the default units of measurement for the instrument.

1) Select ‘Key 2 – Units of Measurement’ and the following screen is displayed:

2) To set the required units of measurement toggle and choose from the following:

<table>
<thead>
<tr>
<th>Key</th>
<th>Measurement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Temperature</td>
<td>°C, °F</td>
</tr>
<tr>
<td>2</td>
<td>Flow</td>
<td>scfm, m³/hr</td>
</tr>
<tr>
<td>3</td>
<td>Measurement</td>
<td>Inches, Millimeters</td>
</tr>
</tbody>
</table>
3) Select soft-key ‘Exit’ to exit this screen and return to the ‘User Settings’ menu.

7.3.3 ID selection

The ID selection screen allows the operator to scroll through all IDs, including those uploaded from LSGAM and added directly onto the instrument, and then make a selection. Detailed information regarding the currently selected ID, such as flow device type and pump runtime, are displayed below:

By selecting ‘Key 5’ the operator can toggle between showing 30 IDs and showing 5 IDs with more detailed information relating to the chosen ID.

The technician can scroll between the IDs using the following keys on the instrument keypad:

- Two (2) and eight (8) move the selection up/down
- Four (4) and six (6) move the selection left/right on the list view
- One (1) and three (3) move the selection left/right a page in the list view only
- Seven (7) and nine (9) move the selection to first/last ID
- Five (5) toggles between the 'ID with information' and 'ID list'
- Return/enter key selects the desired ID and proceeds to the navigation or reading screen.

If there are no IDs present the technician can either add a new ID or press the enter key on the instrument keypad to return to the previous screen.
Soft keys:

Left - Select 'No ID' and go to the purge/reading screen.
Centre - Enabled when there is a list of IDs, allowing the technician to dynamically filter the IDs displayed in the list.
Right - Allows the technician to add a new ID to the instrument 'in the field'.

Note: If your analyzer has firmware version v1.12 or greater, used IDs will have a strikethrough.

Changing the sort order

By default the IDs are sorted in the order in which they were transferred to the instrument. To change the sort order between unsorted, sort by name or sorted by distance to travel press Key 0.

0 Sorted by original order (not sorted)
0 A-Z Sorted alphabetically
0 Sorted by distance to travel

Note: Only available when GPS is enabled

For analyzers with firmware v1.12 and above:

1) Press the menu key
2) Press the middle soft key for 'User Settings'
3) Press key 3 – ‘ID options’
 a. Key 1 to change the sort order
 b. Key 2 to change how the IDs are displayed
 c. Key 3 to clear the line through on the current ID being used
 d. Key 4 to remove the line through on all IDs
7.3.4 Routes
Using the optional Landtec Systems Gas Analyzer Manager Software (LSGAM) you can upload a route, this is a predefined list of IDs that you can go through in an order. This feature is useful if you have a certain order to complete your IDs in.

Furthermore if your GA5000 has v1.12 or higher firmware it will strike through your IDs once you have used them.

Note: If the analyzer is set to “route mode” (v1.12 and above), the filter box will no longer be there, as you cannot filter in this mode. It will be replaced by “Route” and the route name.

7.3.5 Adjust backlight

This option enables the operator to adjust the backlight (brightness). Having this set to a darker setting will help preserve the battery power.

1) Select ‘Key 4 – Adjust Backlight’ and the following screen is displayed:

2) Keys 4 and 6 can be used to adjust the brightness of the display screen.

 ‘Manual’ disables the backlight timeout.

3) Select the soft-key ‘Save’ to store the setting or select soft-key ‘Exit’ to exit the screen without saving the change.
4) The operator will return to the ‘User settings’ menu.

Selecting ‘Key 1’ allows the operator to configure the dimmer settings from ‘Auto Dim’ to ‘Auto Off’ in order to help preserve power consumption when data logging.

This icon represents ‘Auto Dim’ – this enables the backlight idle timeout, which means the backlight will go dim after a specified period of inactivity. This will help save battery life.

This icon represents ‘Auto Off’ – this switches the backlight off, saving power.

⚠️ Note: The manually set contrast setting is retained when the read-out is switched off and may require resetting when next switched on.

7.3.6 Adjust volume

This option enables the operator to adjust the volume for the internal speaker, for example the alarm tone. A lower setting will help preserve the battery power.

1) Select the ‘Menu’ button on the front of the analyser to display the ‘Device Settings’ menu. Press the soft-key to display ‘User Settings’.

2) Select ‘Key 5 – Adjust Volume’ and the following screen is displayed:

3) Manual adjustment of the volume is available via this option and can be carried out with use of ‘Key 4 - Scroll left’ (<) volume down and ‘Key 6 - Scroll right’ (>) volume up.
4) Select the soft-key ‘Save’ to store the setting or select soft-key ‘Exit’ to exit the screen without saving the change.

5) The operator will return to the ‘User settings’ menu.

7.3.7 User Prompts

This option enables the operator to either turn on or off the context-sensitive user prompts which are displayed during the gas sample process. The analyzer will have the user prompts on when it is first used. If they are not required, they can be switched off by selecting soft-key ‘6’ and this will now be the default setting. Prompts can be switched back on at any time by returning to this menu and selecting soft-key ‘6’.

7.4 Operation settings

To access the ‘Operation settings’ menu, select the ‘Menu’ key on the front of the analyzer to display the ‘Device Settings’ menu followed by the soft-key to display the ‘Operation Settings’ menu. The following menu is displayed:
7.4.1 Timers

The timers function enables the operator to set standard purge times and set auto-power off if the unit is untouched for the period of time specified.

1) Select ‘Key 1 – Timers’ and the following screen is displayed:

1) Select ‘Key 1’ to edit the purge time. Enter the ‘Pump Running Time’ in seconds; this is the length of time you wish to run the pump to draw the sample, e.g. key in 030 then press the ‘Enter’ key to accept.

2) Select ‘Key 2’ to edit the auto power off time. Enter the ‘Auto power off’ in minutes; the instrument will automatically power off to preserve the battery life after the specified time if no activity has occurred on the instrument. Press the ‘Enter’ key to accept.

3) Select the soft-key ‘Exit’ key to exit the screen and return to the ‘Operation settings’ menu.

Note: Setting the purge time and auto power off functions to zero, disables the option. It is not recommended to reduce the purge time to below 30 seconds.

7.4.2 Gas Check

This option displays the ‘Gas Check’ menu and enables the operator to zero and span the gas channels on the instrument. Historical/previous gas checks data can also be viewed and factory settings can be restored.

1) Select the ‘Menu’ button on the front of the analyzer to display the ‘Device Settings’ menu. Press the soft key to display ‘Operation Settings’.
2) Select ‘Key 2 – Gas Check’ and the following menu is displayed:

```
Gas Check menu
```

3) For more information about the Gas Check Menu please refer to section 9.0 – Calibration.

4) Select soft-key ‘Exit’ to exit operation settings and return to the main screen.

7.4.3 View data

This option enables the operator to view the readings collected and stored on the instrument. Readings may be downloaded to the optional Landtec Systems Gas Analyzer Manager (LSGM) software if further analysis is required.

1) Select the ‘Menu’ button on the front of the analyzer to display the ‘Device Settings’ menu. Press the soft-key to display ‘Operation Settings’.

2) Select ‘Key 3 – View Data’ and the following screen is displayed:

```
View Data screen
```

3) Toggle through the reading by selecting ‘Key 4 – Scroll left’ and ‘Key 6 – Scroll right’ on the analyzer. Select ‘Key 2 – Page up’ and ‘Key 8 – Page down’ to page through the auxiliary channels listed.

4) Select the soft-key ‘Filter’ to filter the data by sample point ID, or specify before or after date. Press the soft-key ‘Exit’ to exit the filter menu and return to the ‘View Data’ screen.
5) Select the soft-key 'Delete' followed by the appropriate soft-key to delete a single reading or all filtered readings. Press soft-key 'Cancel' to cancel the deletion request.

6) Select the soft-key 'Exit' to exit the view data screen.

7.4.4 Set alarms

This option enables the operator to define the conditions for which an alarm/target will be triggered. These conditions apply to the general operation of the instrument and are not ID specific. A summary of the alarm settings can be found in 'Key 3 – Summary'.

Types of alarms
Common Alarms – Are non-ID specific alarms which apply to all the readings taken with the analyzer.

ID specific alarms – Are ID specific, i.e. they will only trigger when a certain ID is being used.

Tuning/targets – You can also set targets for your gas channels, these will highlight gas channels green as oppose to when they alarm (yellow). These can be common or ID specific.

Setting up alarms/targets
1) Select the ‘Menu’ button on the front of the analyser to display the 'Device Settings' menu. Press the soft key to display 'Operation Settings'.

2) Select 'Key 4 – Set Alarms' and the following menu is displayed:
3) Select the corresponding key to select the gas for which you wish to set an alarm/target trigger for, followed by ‘Key 1’ to change the trigger condition of an alarm.

4) To manually adjust the alarm/target set press (>) ‘Key 4 – Scroll left’ or ‘Key 6 – Scroll right’ (>) and enter the trigger value. Once you are happy, press the middle soft key for ‘save’.

5) For pressure, temperature and flow alarms, press the left soft key for ‘Secondary’ and then select the corresponding key to select the channel for which you wish to set an alarm trigger for, followed by ‘Key 1’ to change the trigger condition of an alarm/target. Once you are happy, press the middle soft key for ‘save’.

6) To disable all alarm settings select key 0 – ‘Disable All’

Note: ID specific alarms cannot be added/edited on the analyzer, to add/edit ID specific alarms, please use the optional Landtec Systems Gas Analyzer Manager (LSGAM) Software.

7.4.5 Adjust flow fail

This option enables the operator to adjust the flow fail tolerance of the instrument, i.e. the operator can adjust the sensitivity for when the pump will stop operating on the presence of a blockage or low flow.

1) Select the ‘Menu’ button on the front of the analyzer to display the 'Device Settings' menu. Press the soft-key to display 'Operation Settings'.

2) Select ‘Key 5 – Adjust Flow Fail’ and the following screen is displayed:

3) Manual adjustment of the flow fail is available via this option and can be carried out with use of ‘Key 4 – Scroll left’ (>) less sensitive and ‘Key 6 – Scroll right’ (>) more sensitive.

4) Select the soft-key ‘Save’ to store the setting or select soft-key ‘Exit’ to exit the screen without saving the change.

5) The operator will return to the ‘Operation settings’ menu.

Note: The default setting displays the bar in the center. BEFORE altering this setting, please contact Technical Support at (800) 968-2026 or email landtec_support@qedenv.com
7.4.6 Technician login

This option enables the operator to select or change a pre-defined technician login and all subsequent readings will be tagged with this Technician Login ID. The technician ID must already have been created using the Landtec Systems Gas Analyzer Manager (LSGAM) software and uploaded to the instrument.

1) Select the ‘Menu’ button on the front of the analyzer to display the ‘Device Settings’ menu. Press the soft key to display ‘User Settings’.

2) Select ‘Key 6 – Technician login’ and the following screen is displayed:

3) Use the cursor keys to move throughout the list of IDs displayed; select the ‘Enter’ key to select choice of ID, default if no IDs are listed or soft-key ‘Skip’ to skip the selection.

4) The operator will return to the ‘User settings’ menu.

Note: If no technicians are loaded via LSGAM, this section is skipped during start up and the ‘Technician ID’ icon is removed from the menu.

7.5 Exit menu

1) Press the ‘Menu’ button on the front of the analyzer to exit settings.
8.0 Taking readings

8.1 Preliminary checks before taking readings (best practice)

Prior to use, it is good practice to ensure that:

Step 1 If using LSGAM ID codes and information have been uploaded from LSGAM to the analyzer. Please see section 8.1.1 for more information on this.

Step 2 The instrument has the correct time and date set.

Step 3 The water trap filter is fitted and is clean and dry.

Step 4 The battery has a good charge (minimum 25% charge, even if only a few readings are required).

Step 5 All gas channels have been zeroed, without gas concentration present.

Step 6 If necessary check the span calibration with a known concentration calibration gas.

Step 7 Take readings.
GA5000 Gas Analyzer

Warning

Inhaling hydrogen sulphide gas (H₂S) or other harmful gases can cause death. It is the responsibility of the user to ensure that he/she is adequately trained in the safety aspects of using H₂S and other harmful gases. In particular, where hazardous gases are being used the gas exhausted from the analyser must be piped to an area where it is safe to discharge the gas. Hazardous gas can also be expelled from the instrument when purging with clean air.

Good practice

- Travel to site with the gas analyzer in the vehicle's interior - not in the trunk, where it may be subjected to extremes of temperature and possible shock damage. Do not place the gas analyzer against anything hot (e.g. gas extraction pipe, car body or in an unattended car during the summer) as this will cause a temperature increase in the gas analyzer and may cause erroneous readings.

- When moving around a site, protect the gas analyzer from strong direct sunlight and heavy rain.

- Always use the water trap! If the water trap becomes flooded, change the filter and ensure all tubes are clear of moisture before re-use.

 ≫ Note: If the exhaust of a 5000 series gas analyzer is connected to a pressurized system then this results in a flow of gas out of the inlet flow port.

8.1.1 Creating an ID

There are two different methods to creating an ID, either via LSGAM or via the instrument.

If created on the analyzer, you can only fill out basic information, such as ID code, description and ID type. Whereas on LSGAM, you can assign site and ID questions (please see below), assign flow devices, input GPS coordinates etc.

To create an ID on LSGAM please consult the LSGAM operating manual. To create an ID on the instrument:

1) Press the left blue arrow key for ‘Next ID’
2) Press the right blue arrow key for ‘Add’
3) Input an ID code using the keypad
4) Press enter
5) Using the corresponding number to input different properties of the ID
6) Once you are happy, press the middle key for ‘add’

8.2 Answering site questions

Prior to taking the readings at a particular site, the site questions should be populated, this is only necessary when using site questions, if not, please proceed with the reading as normal. This is accessed via the ‘Special Action’ menu. The answers to these questions are then stored and appended to each reading stored thereafter, until the site questions are updated for another site. You will need LSGAM software to create site questions and if you are using LSGAM, this data will be uploaded to LSGAM along with the reading data.
8.3 Answering ID questions

Prior to, or after, you have taken the reading, the ID questions should be populated, this is only necessary when using ID questions, if not, please proceed with the reading as normal. When you have uploaded IDs with ID questions assigned to them (LSGAM software required), you will be prompted to answer these questions at the end of the reading, this means that the answer only equates to that reading.

8.4 Special action

This menu enables the operator to perform the additional following functions out of sequence if so desired.

1) From the ‘Main Gas Read Screen’ select the soft-key ‘Special Action’ and the following menu is displayed:

Note: The list of special action options displayed on the special action menu is dependent upon device type and sequence.

The following special actions may be performed:

<table>
<thead>
<tr>
<th>Action</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key 1 – Simple Gas</td>
<td>This action enables the operator to take a quick gas reading. The pump will start running automatically when this key is selected. The operator can stop the pump by pressing the pump key on the keypad at any time and the reading can then be stored by selecting soft-key ‘Store’.</td>
</tr>
<tr>
<td>Key 2 – Site Questions</td>
<td>This action enables the operator to update site questions prior to taking a reading.</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Key 3 – ID Questions</td>
<td>This action enables the operator to update ID questions specific to sample points prior to taking a reading.</td>
</tr>
<tr>
<td>Key 4 – Flow</td>
<td>This action enables the operator to measure internal flow first when taking a reading. Connect the blue hose to the sample point. The yellow hose can be vented a safe distance from the sample point or re-circulated back into the system. Select either soft-key ‘Zero Flow’, ‘Flow Options’ or ‘Start’ to commence internal flow. Select soft-key ‘Store’ to store and record the reading.</td>
</tr>
<tr>
<td>Key 5 – Enter Temperature</td>
<td>This action enables the operator to manually enter a temperature reading if not using a temperature probe prior to taking a gas measurement.</td>
</tr>
<tr>
<td>Key 6 – Start Logging</td>
<td>This action enables the operator to leave the analyser unattended to take samples at a predetermined time. The reading interval and pump run times may be edited prior to commencing the logging cycle.</td>
</tr>
</tbody>
</table>

8.4.1 Configuration of the data logging option

1) Connect the blue hose to the sample point. The yellow exhaust hose can be vented a safe distance from the sample point; do NOT re-circulate back into the system.
2) By selecting ‘Next ID’ the operator can select the ID which is being sampled at present.
3) Once the ID has been chosen the analyzer will commence & complete its clean air purge cycle.
4) To gain access to the data logging option the operator will be required to select the ‘Special Action’ key to obtain the special user options. The data logging option can then be selected via ‘Key 6’ to configure the logging parameters.
5) Once the operator has confirmed the logging parameters, select soft-key ‘Start Logging’.
6) Once the logging function has been activated the analyzer will carry out a 30 second warm-up (displayed below the temperature read out at the right of the main gas read screen) and begin the first sample.

7) If for any reason during the logging cycle the inlet port becomes blocked, the analyzer will sense this as a ‘Flow Fail’ and the pump will automatically retry until the reading can be obtained. As such care must be taken when positioning the sample tubing to ensure water/moisture ingress does not occur.

8) Select soft-key ‘Stop Logging’ to stop logging if required.

8.4.2 Profiling option

1) The ‘Logging Mode’ center soft-key toggles between ‘Logging Mode’ and ‘Profiling Mode’ and pressing it will change the mode to the one the soft-key describes. For example, when on the profiling page the key will display as ‘Logging Mode’ and when on the logging page the key will display as ‘Profiling Mode’.

2) To edit the parameter the operator will be required to select ‘Key 3’ to select the number of reading required. Once the number of readings has been updated press the return key to confirm parameter setting.

3) By selecting ‘Key 2’ the operator can edit the logging interval of their logging preferences and then confirm the amendments by pressing the return key.

4) Once the logging parameters are confirmed, commence the logging by selecting the ‘Start Logging’ key.

5) If for any reason during the logging cycle the inlet port becomes blocked, the analyzer will sense this as a ‘Flow Fail’ and the pump will automatically retry until the reading can be obtained. As such care must be taken when positioning the sample tubing to ensure water/moisture ingress does not occur.

6) Select soft-key ‘Stop Logging’ to stop logging if required.

Select the soft-key ‘Exit’ to exit this menu and return to the ‘Main Gas Read Screen’.

8.5 The gas flow measurement screen

The GA5000 gas analyzer enables gas and flow measurements to be recorded by using:

- An anemometer
- A temperature probe
8.6 How to use the Internal Flow (Optional)
The internal flow is an optional feature and must be specified at the time of manufacture or the analyzer can be upgraded at service.

The GA5000 gas analyzer has the capability to measure the gas flow from a borehole without the need for an additional flow pod.

This function can be selected as 'on' or 'off' for each ID using Landtec Systems Gas Analyzer Manager. If it is off the user will not be prompted to measure the flow. However, if LSGAM is not being used, flow measurement is automatically measured.

If the analyzer is fitted with the internal flow feature the internal flow option works on a principle of a pressure drop across a known restrictor.

Instructions for Use:

1) From the 'Main Gas Read' screen select the center soft-key for the 'Special Actions' command, this will open a sub-menu. Select Option number "4" for Flow.

2) Making sure the sample tube is not connected to the blue port, select soft-key 'Zero Flow'.

3) Move the sample tube from the white port to the blue port. The yellow exhaust hose can be vented a safe distance from the sample point; do NOT re-circulate back into the system.

4) Select soft-key 'Flow Options' to toggle through and select type:

 Average The average of the readings taken over the duration.

 Peak The highest value recorded over the duration.

 Snapshot The reading recorded at the point at which the 'Store' key is pressed.

 Record Multiple flow measurements recorded over the duration at a user changeable interval (seconds).

 Duration The overall time that an average or peak reading can be taken. Enter the value in minutes, or select continuous.
5) Once the option has been chosen, select soft-key ‘Start’ to begin measurement.

6) Re-open the borehole tap to allow gas to pass through the instrument.

7) Depending on the option selected, the user will be directed to one of four similar screens. Each screen shows a graph of the gas flow rate. The chosen option will affect the value to the left of the graph, as follows:
 - Average – value in top left will change with the real-time mean flow rate calculation
 - Peak – value remains at the highest flow rate recorded
 - Snapshot – no value seen
 - Record – last interval flow reading record held

As shown below, the graph displays flow measurements versus time. Below this is a timer displaying sample duration since measurement start and next to this is a live flow measurement display.

8) If a continuous duration is selected for ‘Record’ option, select soft-key ‘Store’ to stop measurement
8.7 How to use an anemometer (optional)

The GA5000 gas analyzer has the facility to attach an anemometer device enabling the site engineer to measure the flow of gas within an extraction system. The anemometer can be set to display two values; m/s (meters per second) and m³/hr (metres cubed per hour).

It is best practice to take the gas reading first before taking the flow reading with the anemometer attached.

If using a ‘borehole ID’ the internal pipe diameter can be predetermined in the optional Landtec Systems Gas Analyser Manager (LSGAM) software. Once set, the site engineer cannot edit the pipe diameter setting.

If the site engineer is not using a borehole ID or the pipe diameter is not set in LSGAM the operator will be prompted to enter a pipe diameter with a new ID on the analyzer. Select soft-key ‘Next ID’ from the Main Gas Read screen, followed by soft-key ‘Add’ and add a new borehole location.

In order to use the anemometer it is important to know the internal diameter (ID) of the pipe if you want to calculate the flow in m³/hr (metres cubed per hour). This must be the internal diameter not the outer diameter (OD) i.e. pipe outer diameter minus twice the pipe wall thickness.

For example:

![Diagram showing pipe ID, OD, and wall thickness](image)

If you do not have any suitable monitoring points you will need to drill (tap of ¾” BSP pipe thread) a hole in the piping of between 25mm and 30mm in diameter to seat the conical fitting on the anemometer (which is roughly between 20mm to 34mm). When not in use the hole can be re-sealed with a ¾” BSP male bung.

Note: When the anemometer is not in use the conical fitting should be placed over the probe to protect it.
The anemometer must fit centrally (the conical fitting must be set on the probe to half the pipe ID before insertion). The arrow on the tip of the probe must point in the direction of the gas flow.

☞ Note: Use the thumb screw to help align the direction of the probe into the gas stream.

Flow readings are most accurate when there is laminar flow (not turbulent). Turbulence can be caused by a change in pipe direction or restriction. Ideally, upstream you want at least 20 times the pipe ID along the length of the pipe without restriction or bend. Downstream, you want at least five times the pipe ID along the length of the pipe i.e. for a 100mm ID you need 2000mm of clear pipe upstream, 500mm downstream.

Example to show anemometer fitting into the sample point:

Instructions for use:

1) Attach the anemometer to ‘Connector C’ (refer to section 5.3 – Instrument connection points).

2) Place the anemometer into the pipe (sample point) ready to take the reading.

3) To take a flow measurement when using an anemometer, follow the instructions displayed on the analyzer. When the reading has stabilised press the ‘Enter’ key to store the reading.

☞ Note: The use of an anemometer overrides internal flow.
Anemometer cleaning instructions:

General handling tips:

- Protect the probes against severe vibration.
- Do not kink the connector cable (risk of cable breakage).
- Never allow hard objects to contact rotating impellers.
- Always carry out probe cleaning according to the cleaning instructions.
- Never immerse probes in solvent.
- Never blow probes through with compressed air.
- Allow hot probes to cool slowly, never cool by plunging them in cold water etc.

Cleaning instructions:

- Instrument and probe must be switched off or disconnected prior to cleaning.

Vane probes:

- As the probes are highly sensitive measuring instruments, they must be cleaned with great care.
- Fibres or other foreign bodies can be carefully removed with fine tweezers. When doing so, take care not to bend or otherwise damage the vanes or the spindle.
- The adjustment of the bearing screws must never be changed. This can result in an erroneous measurement.
- Never allow hard objects to contact rotating impellers.
- Cleaning agents that extract the plasticizer from the plastic are never to be used for plastic probes (practically all solvents).

Cleaning the probes – best practice:

-disabled: Use soapy water.

Cleaning example:

1) Carefully, swish the top part of the impeller back and forth in clean soapy water for approximately 10 minutes. If soapy water is used as a cleaning agent it is advisable to wash out the soap solution thoroughly with distilled water.

2) After cleaning the probe, rub it dry with a clean, dry cloth.

8.8 How to use an H2S filter (optional)

8.8.1 Cross gas effects on chemical cells

Measurements of CO are important in landfill management. The GA5000 analyzer incorporates an improved CO measurement.

Measurements of CO can be affected by two other gases that can be found in landfill gas – hydrogen and hydrogen sulphide.

To reduce the effect of hydrogen, the GA5000 analyzer uses a technique that is hydrogen compensated. Hydrogen compensation is achievable up to a level of around 2000ppm. Above this level the CO reading will not be compensated for.

In order to assist the operator the GA5000 instrument also indicates the level of hydrogen present as low, medium or high. If a high hydrogen reading is present then the CO reading may be affected.

The effect of hydrogen sulphide is eliminated by the use of a H2S filter.
CO measurement

The CO measurement is sensitive to hydrogen sulphide. The presence of hydrogen sulphide can cause the CO reading to elevate (not to be the true value due to the interfering gas). If the presence of hydrogen sulphide is suspected to be causing false CO readings, then it is recommended that the external hydrogen sulphide filter is used while obtaining the CO measurement.

The H₂S filter only needs to be used when you are trying to remove the possible cross gas effects H₂S might have on other gas channels. **Do not** use the filter on all boreholes.

When using the H₂S filter you will need to increase the gas sample and clean air purge run-time, as using an H₂S filter decreases the response time of the analyzer.

☞ **Note:** There is an internal H₂S filter incorporated in the chemical cell that removes the H₂S; however this has a limited life span.

The electrochemical cells used to measure H₂S and CO do suffer from cross-gas effects. Such effects are not accurately specified. However, the following table may be useful as a guide; it represents how many ppm would be read by a cell if 100 ppm of the interfering gas were applied, with no other cross-contaminates being present in the sample.

GA5000

<table>
<thead>
<tr>
<th>Interfering Gas</th>
<th>CO</th>
<th>H₂S</th>
<th>SO₂</th>
<th>NO₂</th>
<th>H₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Cell</td>
<td>CO (H₂ compensated)</td>
<td>100</td>
<td>0 / ~300*</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CO</td>
<td>100</td>
<td><4 / ~300*</td>
<td>0</td>
<td>-20 to +5</td>
</tr>
<tr>
<td></td>
<td>H₂S</td>
<td><4</td>
<td>100</td>
<td>20</td>
<td><-25</td>
</tr>
</tbody>
</table>

*after internal filter depleted.

☞ **Note:** Other gases could cause cross-gas effects. If you suspect a cross sensitivity problem please contact the Technical Support Team at (800) 968-2026 or email landtec_support@qedenv.com.

8.8.2 Cross-gas effects on methane, carbon dioxide and oxygen:

Methane is measured using dual beam infrared absorption. Analyzers are calibrated using certified methane mixtures and will give correct readings provided there are no other hydrocarbon gases present within the sample (e.g. ethane, propane, butane, etc.). If there are other hydrocarbons present, the methane reading will be elevated (never lower) than the actual methane concentration being monitored.

The extent to which the methane reading is affected depends upon the concentration of the methane in the sample and the concentration of the other hydrocarbons. The effect is totally non-linear and difficult to predict.

☞ **Note:** The effect can be reduced by using an H₂S filter as it can reduce higher order hydrocarbons. When using the H₂S filter you will need to increase the gas sample and clean air purge run-time, as using an H₂S filter increases the response time of the analyzer.

Carbon dioxide is measured by infrared absorption at a wavelength specific to carbon dioxide. Therefore, the carbon dioxide reading will not be affected by any other gases usually found on landfill sites.
The oxygen sensor is a galvanic cell type and suffers virtually no influence from CO₂, CO, H₂S, NO₂, SO₂ or H₂, unlike many other types of oxygen cell.

The infrared sensors will not be ‘poisoned’ by other hydrocarbons and will revert to normal operation as soon as the gas sample has been ‘purged’.

H₂S filter:

![H₂S filter image]

Instructions for use:

The following diagram shows how to modify the standard water trap and sample tubing to fit the H₂S filter.

![Sample Point Diagram]

- **Note:** When onsite the site engineer must have an unmodified water trap assembly in addition to the modified water trap with a H₂S filter in order to take readings with and without a filter.

1) Once the H₂S filter is fitted follow the instructions as detailed on the front of the gas analyzer displayed when taking readings using a H₂S filter.

- **Note:** This is only for analyzers fitted with the CO compensated cell.
8.9 How to use a temperature probe (optional)
The temperature probe enables the site engineer to measure the temperature of the gas within a sample point. The GA5000 gas analyzer uses the temperature of the gas to give more accurate flow measurement readings as part of the instrument calculation.

Instructions for use:

1) The temperature probe reading is taken along with the gas measurement reading.
2) The analyzer must be at the ‘Main Gas Read Screen’.
3) Attach the temperature probe to ‘connector B’ (refer to section 5.3 – Instrument connections points).
4) Insert the temperature probe into the sample point (borehole) at the same time as you attach the sample tube to the sample point (two sample points are required for the borehole).
5) Follow the instructions on the front of the instrument when taking your gas and measurement reading.
6) At the point in which the operator presses ‘Enter’ to store the gas reading the temperature is recorded.

☞ Note: Temperature probe readings can be analysed further when downloaded to Landtec Systems Gas Analyser Manager (LSGAM).
8.10 How to identify a borehole using the GPS feature (optional)

An optional GPS feature is available for the GA5000 gas analyzer. It enables the site engineer to automatically locate borehole IDs using GPS satellite signal from predefined borehole IDs uploaded from Landtec Systems Gas Analyzer Manager. The GPS reading data is stored for each measurement reading.

Note: Borehole IDs may be uploaded from LSGAM with or without location information. If location details are not uploaded the location longitude and latitude coordinates can be stored when the borehole is located and downloaded to LSGAM with the reading measurements.

Screen navigation:

1) Switch on the analyzer and wait for the self-test warm-up to complete and the analyzer will display the ‘Main Gas Read Screen’.

2) In order to use the navigation function if configured, you must switch ‘Navigation - On’ on the analyzer. Select the ‘Menu’ key followed by ‘Key 5’ to toggle navigation on. Select the ‘Menu’ key to exit and return to the ‘Main Gas Read Screen’.

3) Select the soft-key ‘Next ID’, then select a borehole ID from the list displayed and press the ‘Enter’ key to continue.

4) After reading the user warning message, select the soft-key ‘Dismiss’. Use the tracking display to locate the borehole

Note: There is often a wait time frame of between 30 seconds to two minutes whilst getting a satellite signal. Be aware that heavy rain, trees overhead etc. will give a bad fix.

5) Once the operator selects a borehole ID the ‘GPS Navigation’ screen is displayed.

6) If required select soft-key ‘Options’ to go to the ‘Navigation Options’ menu and the following screen is displayed:
Key 1 Key 1 to toggle between ‘Meters’, ‘Feet’ or ‘Yards’ to define the unit of measurement.

Key 2 Key 2 to toggle between ‘Manual Scaling’ and ‘Automatic Scaling’ to locate a sample point using a satellite signal.

Key 3 Key 3 to display sample point information:

- **Bearing:** Direction.

- **UTC time:** ‘Universal Time Code’ received from the satellite and displays GMT.

- **Latitude:** Latitude displays as degrees, minutes, seconds and decimal seconds. The equator is 0.

- **Longitude:** E (East) or W (West) displays the longitude as degrees, minutes, seconds and decimal seconds. The Greenwich meridian defines the zero point.

- **Altitude:** Altitude displays in meters, feet or yards.

- **Satellite:** This is the number of satellites that the system can select. Four satellites will give reasonable position accuracy; eight or more satellites will increase accuracy.

- **Horizontal:** Estimate of horizontal error on the indicated position. The location is accurate to horizontal error 1.6m.

- **Vertical:** Estimate of vertical error on the indicated position.

- **HDOP:** ‘Horizontal Dilution of Precision’ which measures the accuracy of the indicated position.
Changing the selected ID

It is possible to change the currently selected ID (identified by green icon 📍) by pressing the 2 and 8 and keys to move the cursor up and down the list of visible IDs. To change the selection press Enter. Notice that the selected ID moves to the top of the list and its icon turns green.

Changing the scale

You can change the display’s scale by using the 4 and 6 keys to zoom in and out.

GPS signal strength:

GPS failure - the GPS was unable to get a line of sight lock on enough satellites. Or, it may be that it hasn’t had time to get a lock.

7) Select soft-key ‘Continue’ and the operator is returned to the ‘Main Gas Read Screen’.

8.11 Taking gas and flow measurement

The top methods of taking a reading

There are two methods to taking a reading, simple gas and a detailed reading, please below for explanations of both:

- Simple gas: Just takes a gas reading and nothing else, this mode can be accessed via the special actions
- Detailed reading: This mode takes you through various steps to achieve (relative and barometric) pressure, gas readings, flow (if required) and fill in any questions you may have assigned to your ID (LSGAM required)

Detailed reading explained

With a detailed reading everything is operated of the right soft key, the process will be slightly different depending on whether you have user prompts enabled but either way it is the same process.

Selecting ID (if required) > Air purge/Baro reading > Relative pressure reading > Gas reading > Flow (if required) > Answering ID questions (if required) > Store
9.0 Calibration

9.1 Calibration introduction

The GA5000 gas analyzer is carefully calibrated at manufacture and when returned for service. However, it is sometimes desirable to be able to carry out a calibration process between services.

This section outlines the correct procedures to enable the site engineer to field calibrate the gas analyzer.

Note: This does not replace the factory service and calibration. If this calibration is completed incorrectly it may decrease the accuracy of the gas analyzer.

CH₄, CO₂ and O₂ can be measured by GA5000 gas analyzer as standard; these channels can be user calibrated. The analyzers have other gas channel options that are specified at manufacture; these too can be calibrated. This section will describe in detail how to calibrate the three standard gas channels plus the CO channel.

For the other gas channel options contact Landtec for advice.

Two important terms that are used within this section are ‘Zero’ and ‘Span’.

Zero: The point at which the gas analyzer is calibrated when there is none of the target gases present.

Span: The point at which the gas analyzer is calibrated when a known quantity of the target gas is present.

9.2 Frequency of calibration – best practice

The GA5000 gas analyzers can be checked against a known concentration of gas, to give confidence that the analyzer is operating as expected at the time and conditions in which it is being used.

It is recommended that the instrument is regularly serviced and calibrated by the factory in accordance with the due date on the instrument.

When defining the frequency of user calibration, the following are factors to be considered:

- The frequency of use of the analyzer. (daily?/monthly?)
- The level of confidence and accuracy required for readings to be taken.
- Historical user calibration data.
- Site specific requirements or conditions.
- Historical understanding of expected readings on site.

Zeroing of the gas analyzer should be undertaken at the start of each day’s monitoring.

Use historical data to drive your frequency of calibration.
If there is no historical data a good starting point for a daily monitoring round is performing a calibration once every week or every other week.

The results of the calibrations will need to be recorded to monitor over time whether the frequency of calibration needs to be increased or decreased relative to the confidence required.

The confidence required will be driven by the site specific / user requirements.

When undertaking the monitoring with an understanding of the history of the gas levels of
that site, a calibration check could be triggered if the readings measured are different to what is expected.

☞ Note: For assistance please contact Technical Support at (800) 968-2026 or email landtec_support@qedenv.com

9.3 Calibration gases
User calibration of a gas analyzer will greatly improve the data accuracy in the range of the calibration gases used. This may cause less accurate readings of concentrations outside this calibrated range. Users should select the correct calibration gas for the expected gas levels on their particular application.

- To improve calibration at lower levels requires the use of gas mixtures 1 and 2.
- To improve higher levels use gas mixture 3.
- For standard CO only 100ppm CO gas is needed.
- For CO (H₂ compensated) both CO 100ppm and H₂ 1000ppm gases are needed.

The following table indicates the different gas mixture canisters used for calibration:

<table>
<thead>
<tr>
<th>Calibration gas</th>
<th>CH₄</th>
<th>CO₂</th>
<th>O₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixture 1</td>
<td>5%</td>
<td>5%</td>
<td>6%</td>
</tr>
<tr>
<td>Mixture 2</td>
<td>5%</td>
<td>10%</td>
<td>0%</td>
</tr>
<tr>
<td>Mixture 3</td>
<td>60%</td>
<td>40%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Calibration targets for gas cells are dependent on the gas/range and type of cell fitted. Contact Technical Support for assistance.

These are for general use but other gas concentrations can be used.

☞ Note: The above gases and most other gas concentrations can be supplied by QED. For further information please contact Sales at (800) 624-2026 or email info@qedenv.com.

⚠️ Warning
Calibration gases can be dangerous. For each gas used the appropriate material safety data sheet must be read and understood before proceeding.

9.4 Calibration set-up

⚠️ Warning
Do NOT attach the gas supply to the gas analyzer before putting the analyzer into the ‘Gas Check’ screen. Select ‘Check Spans’ from the ‘Operation Settings’ menu.

The regulator supplied with the calibration kit has been configured to deliver a fixed flow. As the regulator’s flow is factory set, it only requires a few turns to open, no adjustment is necessary.
Warning

Exhaust port

When the gas analyzer is being calibrated, there are two possible exits for the gas, via the usual manner out of the exhaust (yellow) port of the analyzer or in cases of overpressurization the 1/16" port on the red pressure relief valve located on the regulator.

It is recommended that both ports have exhaust tubing attached.

The exhaust tubing must emerge in a well-ventilated area. Ensure there are no leaks in the tubing and connections.

The calibration of the gas analyzer should be carried out in a safe area with all necessary precautions taken when using potentially dangerous, explosive or toxic gases.

Note: There is also potential for gas to expel from the internal flow (blue) port of the gas analyzer.

9.5 Calibration equipment

The diagram below displays the regulator and tubing equipment for user calibration:

- Certified calibration gas, available in either 58 liter or 110 liter gas canisters, are supplied with the Landtec calibration kit. Please refer to the Landtec website www.landtecna.com for further information.

- The regulator supplied with the calibration kit is pre-set for flow rates and pressure that are factory set.
9.6 Gas analyzer

For the GA5000 gas analyzer the calibration options can be found by selecting the ‘Menu’ key followed by soft-key ‘Operation Settings’. Select soft-key ‘1’ for ‘Gas Check’ and the menu below will appear. From here, select soft-key 1 for ‘Gas Check’.

9.7 Calibration processes – best practice

The following process diagrams outline the calibration steps.
9.7.1 Gas check in fresh air

START
Switch on the instrument and complete the instrument warm up.

Main Gas Read Screen select the ‘Menu’ key
Select key 2 ‘Gas Check’
Select key 1 ‘Gas check’

Let the pump run for 90 seconds and select soft key ‘check’
Select ‘Fresh Air’ by using the enter key
Disconnect all tubing

Message will display ‘Please wait for timer to reach zero’
When complete a message will display ‘Check complete’

Read status field on the right hand side of the screen

Retry Calibrate Record

Was the calibration successful?
Successful
Unsuccessful

Calibrate
Record

Result saved

Select soft-key ‘Exit’

Please see the section 9.11 – Calibration troubleshooting

This feature records that a gas check has been completed but does not calibrate the analyser

Successful

Unsuccessful

Select soft-key ‘Exit’

END
9.7.2 Calibration – mixtures 1, 2 & 3

START
Switch on the instrument and complete the instrument warm up.

Main Gas Read Screen select the 'Menu' key

Select key 2 'Gas check'

Connect the flow regulator to the white port on the analyser

Press 'Enter' to confirm Gas mixture

Select correct gas mixture: 1, 2, or 3, or add User-selectable gas mixture

Wait for the readings to stabilise. Wait for the analyser to check spans for approx. 1 minute.

Select soft-key 'Check'

Message will display 'Please wait for timer to reach zero'

When complete a message will display 'Check complete'

Read status field in the right hand corner of the screen

Calibrate
Record

Was the calibration successful?

Successful

Unsuccessful

Please see section 9.11 – Calibration troubleshooting

This feature records that a gas check has been completed but does not calibrate the analyser

Select soft-key 'Exit'

Read status field in the right hand corner of the screen

Select soft-key 'Exit'

END

Select key 1 "Gas check"

Flow certified gas mixture using the gas regulator supplied
9.8 Restore to factory settings

This option will reset the gas analyzer to all of its factory programmed calibration settings and will clear ALL the user defined calibration points. It will not affect or remove ID’s or readings from the analyzer.

1) Select ‘Key 2 - Restore to factory’ followed by the soft-key ‘Confirm’ or ‘Cancel’.

2) A validation message is displayed ‘Reset user calibration?’ Press the soft-key ‘Confirm’ to continue with the factory settings or soft-key ‘Cancel’ to cancel the operation and return to the Gas Check menu.

9.9 Calibration history
The GA5000 gas analyzer logs user calibrations in the ‘History’ application. This can be used as an aid to ensuring that gas measurements are valid and accurate. Both good and failed calibration results are recorded for each channel calibrated.

1) Select ‘Key 3 – History’.

2) The operator may view the calibration data stored. Use the soft-key ‘Filter’ to add a sort filter to the history enquiry.

9.10 Calibration summary
The GA5000 gas analyzer has the facility to log the history of user calibrations.

1) Select ‘Key 4– Summary’.

2) The operator may view the calibration data history stored by ID, technician, timestamp, type and calibration result. Use the soft-key ‘Exit’ to exit and return to the ‘Gas Check’ menu.
10.0 Problem solving

This section outlines various warning and error messages which the operator may receive during general operation of the instrument. For further assistance please contact Technical Support at (800) 968-2026 or email landtec_support@qedenv.com.

11.0 Warning and error display

When switched on the instrument will perform a pre-determined self-test sequence taking approximately 15 seconds. During this time many of the instrument’s working parameters and settings are checked.

If any operational parameters are out of specification or the pre-programmed recommended calibration/service date has passed, errors or warnings may be displayed.

Use the ‘Scroll up’ and ‘Scroll down’ keys to move through the list if required.

Only three warnings/errors can be displayed at any time.

To ascertain if more errors have occurred use ‘Key 8’ – Scroll down’ and ‘Key 2’ - Scroll up’ through the list.

Warnings displayed:

All warnings displayed will be prefixed by the word WARNING followed by a relevant description.

There are two types of warning that may be displayed:

1. General warnings that may not affect the instrument’s function and those where the self-test has detected a function that is outside the usual programmed operating criteria, (e.g. battery charge low, memory nearly full).

2. Operational parameters that could affect the performance of the analyzer: Cell out of calibration, CH₄ out of calibration, CO₂ out of calibration.

The most likely reason for the errors is either an incorrect user calibration or sensor failure. If an incorrect user calibration has caused the warning it should be correctable by way of returning the instrument to factory settings, zeroing or carrying out a user calibration as necessary for the relevant function.
12.0 Service

The GA5000 gas analyzer should be regularly serviced to ensure correct and accurate operation. Landtec recommends a service and recalibration every 12 months.

The GA5000 range is ATEX certified for use in potentially explosive areas. As such it should be serviced only by qualified engineers. Failure to observe this will result in the warranty becoming invalid and could invalidate the ATEX certification.

⚠️ Warning
If the GA5000 is serviced by unqualified engineers the ATEX certification may be invalidated and the instrument may be unsafe for use in a potentially explosive atmosphere.

User serviceable parts:

There are no user serviceable parts inside the instrument.

The following parts can be user serviced:

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-line water filter</td>
<td>This should be regularly inspected for obstructions, moisture or damage and changed if needed. The instrument should never be operated without the in-line water filter as this may result in water entering the instrument.</td>
</tr>
<tr>
<td>Sample tubing</td>
<td>Always ensure that sample tubes are not contaminated or damaged.</td>
</tr>
<tr>
<td>Gas port connectors</td>
<td>Periodically check that the O-rings on the gas port connectors are not damaged. A damaged O-ring can let air into the sample gas and result in incorrect readings. If the O-ring is damaged the complete gas port connector should be replaced.</td>
</tr>
<tr>
<td>H₂S filter material</td>
<td>When the filter material changes colour to a light grey color the filter should be replaced.</td>
</tr>
</tbody>
</table>
13.0 Warranty policy

This instrument is guaranteed, to the original end user purchaser, against defect in materials and workmanship for a period of 3 years from the date of the shipment to the user.

During this period Landtec will repair or replace defective parts on an exchange basis.

The decision to repair or replace will be determined by Landtec.

To maintain this warranty, the purchaser must perform maintenance and calibration as prescribed in the operating manual.

Normal wear and tear, and parts damaged by abuse, misuse, negligence or accidents are specifically excluded from the warranty.

☞ Note: Please contact Technical Support at (800) 968-2026 or email landtec_support@qedenv.com for further information.
14.0 Glossary of terms

5000 series

The 5000 series refers to the GA5000, GA5000 and the Biogas5000 gas analyzers.

Analyzer error messages

Operational errors are prefixed on the analyser by the word ERROR followed by an error code.

Refer to the list of standard error codes for more information.

Analyzer warning

Analyzer warnings are prefixed by the word WARNING followed by a relevant description. There are two types of warning messages displayed; general warnings that may not necessarily affect the instrument’s function (for example, battery power low) and operational parameters that could affect the performance of the analyzer (for example, CH₄ out of calibration).

Anemometer probe

Device for measuring velocity of gas in the pipe. The GA5000 analyzer can be set to convert into a flow. See also flow measurement.

ATEX certification

The GA5000 is ATEX certified to zone 1 & 2 areas above ground not in mines.

Auxiliary channel

This refers to the channels where external devices will be connected or displayed.

Backlight

The analyzer has a built-in backlight for low ambient light conditions. This can be toggled on/off using the backlight key.

Barometric pressure

The atmospheric pressure at the given location.

Borehole

Typical location from which a gas sample is obtained.

Calibration

The gas analyzer is carefully calibrated against known standards.

Calibration record

The GA5000 instrument has the facility to log user calibrations as a validation tool.

CH₄

Methane

Chemical cells

A method of gas detection that works on the basis of a chemical reaction with the target gas.

CIRIA

The CIRIA guideline ‘Assessing the risks posed by hazardous ground gases to buildings’ proposes that gas concentrations and flow rates should be monitored.
<table>
<thead>
<tr>
<th>Clean air purge</th>
<th>Process used to clear out gas from the sample tube and analyzer prior to taking a new reading.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Carbon monoxide</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>Data logging</td>
<td>Data logging enables the operator to leave the analyzer unattended to take samples at predetermined intervals for a set period of time</td>
</tr>
<tr>
<td>Download</td>
<td>Terminology used for the movement of data from the analyzer to the LSGAM application on the PC.</td>
</tr>
<tr>
<td>Dual beam infrared absorption</td>
<td>Method of gas detection by measuring how much infrared is absorbed by the target gas.</td>
</tr>
<tr>
<td>Event log</td>
<td>Used as an aid to monitoring the use of the analyzer. It can also be used as a diagnostic tool.</td>
</tr>
<tr>
<td></td>
<td>The event log can be viewed via Landtec Systems Gas Analyzer Manager. It cannot be viewed on the analyzer screen.</td>
</tr>
<tr>
<td>Exhaust port</td>
<td>The usual manner for the gas to exit the analyzer is via the exhaust port located on the top side of the analyzer. This port should have an exhaust tube attached.</td>
</tr>
<tr>
<td>Exhaust tube</td>
<td>Clear plastic tubing used to expel gases from the exhaust port.</td>
</tr>
<tr>
<td>Factory settings</td>
<td>Default settings preset at time of manufacture or service.</td>
</tr>
<tr>
<td>Firmware</td>
<td>Firmware is the term by which the internal analyzer software is known and is not accessible by the client. This firmware is updated to the latest version when the analyzer is returned to the factory for servicing.</td>
</tr>
<tr>
<td>Flow measurement</td>
<td>Flow can be measured by either gas velocity m/s or volume flow rate m³/hr. This measurement of flow relates to the use of the anemometer and not the internal flow measurement technique.</td>
</tr>
<tr>
<td>Flow port</td>
<td>For the measurement of gas flow at the sample point.</td>
</tr>
<tr>
<td>Gas channels</td>
<td>The gases that are analysed by the instrument.</td>
</tr>
<tr>
<td>Gas velocity</td>
<td>The positional rate of change of the gas. Measured using the optional anemometer.</td>
</tr>
<tr>
<td>General warnings</td>
<td>Displayed throughout the documentation with a warning symbol. Warning information may affect the safety of operators.</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>H₂</td>
<td>Hydrogen</td>
</tr>
<tr>
<td>H₂S</td>
<td>Hydrogen sulphide</td>
</tr>
<tr>
<td>H₂S filter</td>
<td>Filter required for removal of H₂S. When the filter material changes color to a light gray color or if H₂S values are displayed, then the filter should be replaced.</td>
</tr>
<tr>
<td>Hydro-carbons</td>
<td>Organic compound consisting of only hydrogen and carbon.</td>
</tr>
<tr>
<td>Landtec Systems Gas Analyzer Manager</td>
<td>Also referred to as LSGAM. PC based software which enables the operator to upload and download information to/from the analyzer. LSGAM enables operators to maximize the operation of their gas analyzer. It features a simple upload and download facility and is fully compatible with the latest Microsoft™ operating systems. This is optional.</td>
</tr>
<tr>
<td>LCD display</td>
<td>Liquid Crystal Display</td>
</tr>
<tr>
<td>LEL</td>
<td>Lower Explosive Limit. Lower explosive limit of methane in air. 5% methane in air is the point at which it becomes explosive. 100% LEL equates to 5% methane.</td>
</tr>
<tr>
<td>m/s</td>
<td>Meters per second – measurement of gas velocity.</td>
</tr>
<tr>
<td>m³/hr</td>
<td>Meters cubed per hour – volumetric flow rate measurement.</td>
</tr>
<tr>
<td>Main gas read screen</td>
<td>The main analyzer screen for normal operations and all operations are carried out from this screen.</td>
</tr>
<tr>
<td>Material data sheet</td>
<td>Document from which information about a certain substance can be obtained.</td>
</tr>
<tr>
<td>Memory</td>
<td>Location where data and ID information is stored. The analyzer memory should not be used as a permanent storage medium. Stored data should be regularly transferred using the LSGAM download software.</td>
</tr>
<tr>
<td>NO₂</td>
<td>Nitrogen dioxide</td>
</tr>
<tr>
<td>Operating language</td>
<td>The operator can choose the default operating language for the analyser. Choices are English, German, Spanish, French and Italian.</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>PPM</td>
<td>Parts per million</td>
</tr>
<tr>
<td>Pump</td>
<td>Used to draw the gas sample from the sample point to the analyzer. Select the pump key on the analyzer to activate.</td>
</tr>
<tr>
<td>ID</td>
<td>The user definable identification tag allocated to a sample point.</td>
</tr>
<tr>
<td>Relative pressure</td>
<td>The pressure at the sample point ‘relative’ to atmospheric (barometric) pressure.</td>
</tr>
<tr>
<td>Relative pressure transducer</td>
<td>The internal component used to measure the relative pressure.</td>
</tr>
<tr>
<td>Residual N₂</td>
<td>The calculation for the residual N₂ used on the latest version of the GA5000 platform is as follows:</td>
</tr>
<tr>
<td></td>
<td>Residual N₂ = Balance – (O₂% x 3.76)</td>
</tr>
<tr>
<td></td>
<td>Where, Balance = 100% - (CH₄% + CO₂% + O₂%) and 3.76 is the ratio of O₂ to N₂ in ambient air (79/21)</td>
</tr>
<tr>
<td>Sample tube</td>
<td>The tube used to obtain a sample of gas from the sample point to the analyzer.</td>
</tr>
<tr>
<td>Span</td>
<td>The point at which the gas analyzer is calibrated when a known quantity of the target gas is present.</td>
</tr>
<tr>
<td>Span multi gas</td>
<td>Term by which the span calibration of the three main gas channels is known. This option must only be used when the calibration gas being used is a combination of CH₄, CO₂, O₂.</td>
</tr>
<tr>
<td>Technician ID</td>
<td>An alpha-numeric code tagged to each gas reading. Facility only available via Landtec Systems Gas Analyzer Manager (LSGAM). This is an optional feature.</td>
</tr>
<tr>
<td>Temperature probe</td>
<td>External device used to measure the gas temperature at the sample point. This is optional.</td>
</tr>
<tr>
<td>Update site data</td>
<td>Enables the operator to answer pre-defined questions relating to the site, environment etc. These questions are defined via LSGAM software.</td>
</tr>
<tr>
<td>Upload</td>
<td>Terminology used for the movement of data from the PC via LSGAM software application to the analyzer.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>Volume flow rate</td>
<td>The volume of a gas that passes through a given surface per unit of time e.g. m³/hr</td>
</tr>
<tr>
<td>Warm-up self-test</td>
<td>Pre-determined self-test sequence to test the analyzer functions which takes place after the analyzer is switched on.</td>
</tr>
<tr>
<td>Warranty</td>
<td>The instrument is under guarantee against defect in materials and workmanship for a period of 3 years from the date of shipment to the operator and is subject to the recommended service and recalibration requirements.</td>
</tr>
<tr>
<td>Water trap</td>
<td>Device used to protect the instrument from water or moisture ingress.</td>
</tr>
<tr>
<td>Zero</td>
<td>The point at which the gas analyzer is calibrated when there is none of the target gas present.</td>
</tr>
<tr>
<td>Zero transducers</td>
<td>This option allows the relative pressure transducer to be zeroed.</td>
</tr>
</tbody>
</table>